skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomsen, Emil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yersinia pestis, the pathogen causing plague, requires iron to grow. Y. pestis employs several uptake pathways for iron, including the siderophore yersiniabactin, as well as hemin and inorganic iron. The Y. pestis iron assimilation repertoire further harbors the uncharacterized YiuRABC pathway, presumed to transport an as yet unidentified Fe(III)-siderophore(s). Through intrinsic fluorescence quenching of the periplasmic binding protein YiuA, we discovered that YiuA displays high affinity towards Fe(III) complexes of the hydrolysis products of enterobactin, Fe(III)-[di-(DHB-LSer)] and Fe(III)-[DHB-LSer]2, with Kd‘s of 27.6 ± 4.2 nM and 28.2 ± 6.9 nM, respectively, as well as the bis-catechol siderophore butanochelin, with Kd 0.76 ± 0.17 nM. By comparison, YiuA has a much weaker affinity for intact Fe(III)-enterobactin, Kd 444.7 ± 20.6 nM. Electronic circular dichroism spectroscopy reveals YiuA has a strong preference for binding Λ configured Fe(III)-siderophores, which can be achieved with the Fe(III) bis-catechol complexes but not Fe(III)-enterobactin. 
    more » « less
    Free, publicly-accessible full text available September 12, 2026
  2. To overcome iron starvation, microorganisms often produce siderophores—chelators with high affinity and selectivity for Fe(III). The recent discovery of the siderophore gramibactin garnered significant interest, as it added the C-diazeniumdiolate as a new Fe(III)-binding group in siderophores. Gramibactin is a mixed ligand siderophore, comprised of two graminine residues harboring the diazeniumdiolate donors and a β-hydroxy-aspartate donor. Diazeniumdiolate siderophores have so far evaded crystallographic characterization and few structures of synthetic diazeniumdiolate complexes are reported. To address the gap in structural information, the complexes K[M(III)-gramibactin] (M= Fe and Ga) were prepared, crystallized and their structures solved by X-ray diffraction (XRD). The four Fe-O bond lengths in the two diazeniumdiolates are quite similar, ranging from 1.978 Å to 2.059 Å, indicating an equal contribution in bonding. In contrast, the differing Fe-O bond lengths in β-hydroxy-aspartate reflect the relative donor strengths of the carboxylate (1.997 Å) and alkoxide (1.902 Å) groups. Gramibactin coordinates Fe(III) in a Δ-configured distorted octahedral geometry. The diamagnetic nature of Ga(III) is often leveraged in NMR studies to infer the solution structure of the corresponding Fe(III)-siderophores, which are assumed to be identical. The structural similarity of Ga(III)- and Fe(III)-gramibactin is striking and represents the first crystallographic verification of the assumed isostructural relationship between a Ga(III)- and an Fe(III)-siderophore. By providing concrete evidence, this study promotes Ga(III) as a reliable proxy for Fe(III) in siderophore complexes, with implications for solution structure determination of siderophores and design of Ga(III)-siderophore-based theranostics. 
    more » « less
    Free, publicly-accessible full text available September 19, 2026
  3. Bacteria compete for iron by producing small-molecule chelators known as siderophores. The triscatechol siderophores trivanchrobactin and ruckerbactin, produced byVibrio campbelliiDS40M4 andYersinia ruckeriYRB, respectively, are naturally occurring diastereomers that form chiral ferric complexes in opposing enantiomeric configurations. Chiral recognition is a hallmark of specificity in biological systems, yet the biological consequences of chiral coordination compounds are relatively unexplored. We demonstrate stereoselective discrimination of microbial growth and iron uptake by chiral Fe(III)–siderophores. The siderophore utilization pathway inV. campbelliiDS40M4 is stereoselective for Λ-Fe(III)–trivanchrobactin, but not the mismatched Δ-Fe(III)–ruckerbactin diastereomer. Chiral recognition is likely conferred by the stereospecificity of both the outer membrane receptor (OMR) protein FvtA and the periplasmic binding protein (PBP) FvtB, both of which must interact preferentially with the Λ-configured Fe(III)-coordination complexes. 
    more » « less
  4. Yersinia ruckeriproduces the tri-catechol siderophore ruckerbactin, Rb, yet its periplasmic binding protein YiuA has unprecedented selectivity for the 1 : 2 Fe(iii) complex of the mono-catechol siderophore, Fe(iii)–(RbMC)2
    more » « less
    Free, publicly-accessible full text available October 3, 2026
  5. The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State‐of‐the‐art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine‐ester backbone of the general class, (DHB‐ l / d CAA‐ l Ser) 3 (CAA, cationic amino acid). Siderophores with l / d Arg, l / d Lys and l Orn, but not d Orn, were predicted in bacterial genomes. Fortuitously the d Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)‐siderophores raises the question of whether the relevant siderophore‐mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration. 
    more » « less